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Why care about FPGA SEU 
types?

We want to understand what SEU 
mitigation techniques work while being 
cost effective.
Assumption: Some designs can allow 
lower reliability for a reduced mitigation 
cost.

A spectrum of reliability and cost points is 
possible.
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FPGAs aren’t ASICs
Fault models for ASICs don’t necessarily apply 
to FPGAs.

SEUs in an FPGA can change the design, not just 
user data.

Not all SEUs have an effect.
Only a subset of resources are used per design.

SEU mitigation techniques for ASICs may not 
work for FPGAs.
FPGA-specific migitation techniques seem 
possible and may be more cost effective.
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Virtex FPGA Architecture: 
General
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Virtex FPGA Architecture: Slice 
(1/2 of a CLB)

LUTs

Flip-flops

Carry logic and
Internal routing
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Virtex FPGA Architecture: Slice 
Input/Output Muxes
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Virtex FPGA Architecture: CLB 
Routing Resources

Single-length 
wires use 
programmable 
interconnect 
points (PIPs) for 
switching.
Hex-length wires 
use muxes and 
buffers.
Resources used 
for switching 
between routing 
types varies.
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Bitstream SEU Failure 
Classification Methodology

Find sensitive bits in a design using SEU 
simulator
Identify each sensitive bit’s function
Classify each sensitivity based on

Type of resource upset
Whether the bit was “on” or “off” in the 
original bitstream
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Bitstream SEU Failure 
Classification Flow
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SLAAC-1V SEU Simulation 
Platform (BYU/LANL)

Design loaded into 
X1 and X2 and run 
synchronously
Inject faults into 
X1’s bitstream 
X0 provides test 
vectors and 
compares outputs to 
identify when a 
specific bitstream 
upset affects design 
operation
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Identifying Configuration 
Bitstream Functions

Configuration bitstream function 
definitions were based on non-
disclosure information provided by 
Xilinx.
Additionally, JBits’ documentation and 
APIs provided a useful model for 
understanding the low-level architecture 
of the Virtex devices.
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Classification of circuit failures
Takes into account the type of resource and 
the state of the resource in the original 
bitstream
Failure modes

Mux select upsets
Programmable interconnect point (PIP) upsets

Opens, shorts, loading
Buffer upsets (on/off)
Look-up table (LUT) value changes
Control bit changes
Unclassified (other failures)
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Failure Mode Examples: Mux 
Select Upsets

Configuration
bits

Configuration bit
SEU

0
1

Configuration
bits

0
0

(a) Initial mux 
configuration

(b) Mux after bitstream 
SEU
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Failure Mode Examples: PIP 
Short Upset
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Failure Mode Examples: PIP 
Open Upset
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(a) PIP connecting 
source wire to load wire
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disconnecting source 
wire from load wire
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Failure Mode Examples: Buffer 
Off Upset

Configuration
Bit SEU
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(a) Buffer connecting 
source and load wires

(b) Buffer upset 
disconnecting source 

and load wires
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Failure Mode Examples: Buffer 
On Upset
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two unrelated active 
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Failure Mode Examples: LUT 
Value Change
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(a) LUT implementing 
a 4-input AND

(b) LUT bit upset 
causing the LUT to 

implement a constant 
“zero” function
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Failure Mode Examples: 
Control Bit Changes (Slice)

Bits V, E, F, and G
control the 
programmable 
inversion of inputs
The T bits control 
whether the LUTs 
perform as LUTs, 
RAMs (16x1, dual-
ported, 32x1), or 
shift registers
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Examples of Failure Modes 
Based on Resource Type

Slice and IOB control bits (programmable 
inversions, flip-flop configuration, etc.)

Control change

Clock routing and control, configuration register 
upsets, etc.

Unclassified

F and G LUTs in slice/CLB resourcesLUT change

Bi-directional hex wire buffers, mux output 
buffers, etc.

Buffer upset

PIPs for single wires, edge routing, etc.PIP upset

Slice/IOB input and output muxes, internal slice 
and IOB muxes, hex wire routing muxes, etc.

Mux select 
change

Resource Type ExamplesFailure Mode
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Sample Design Analysis
Designs

Simple: 8-bit counter
Control-like: multiple 72-bit linear feedback shift 
registers (LFSRs)
Data Path: 8 36-bit multipliers and a summing 
adder tree

Designs do not use IOB flip-flop structures, 
Block SelectRAM, or advanced clocking 
features
Upsets in user-accessible configuration 
registers were not modeled.
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Classification of Failures: 8-bit 
Counter (unweighted)

Not weighted by probability 
of failure
Control upsets: 12%
LUT upsets: 4%
Mux select upsets: 59%
PIP upsets: 16%
Buffer upsets: 7%
Unclassified: 2%

Routing: 82%
LUT/Control: 16%
Total failure bits: 389
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Classification of Failures: 72-
bit LFSRs (unweighted)

Control upsets: 13 %
LUT upsets: 2%
Mux select upsets: 73%
PIP upsets: 10%
Buffer upsets: 1.8%
Unclassified: <1%

Routing: 84.8%
LUT/Control: 15%
Total failure bits: 392,166
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Classification of Failures: 72-
bit LFSRs (weighted)

Weighted by probability of 
failure
Control upsets: 17 %
LUT upsets: <1%
Mux select upsets: 70%
PIP upsets: 11%
Buffer upsets: <2%
Unclassified: <1%

Routing: 82%
LUT/Control: 18%
Total failure bits: 392,166
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Classification of Failures: 
Multiply/Add Design (unweighted)

Control upsets: 7%
LUT upsets: 14%
Mux select upsets: 58% 
PIP upsets: 19%
Buffer upsets: 1%
Unclassified: < 1%

Routing: 78%
LUT/Control: 21%

Total failure bits: 1,175,036
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Classification of Failures: 
Multiply/Add Design (weighted)

Weighted by probability of 
failure
Control upsets: 9%
LUT upsets: 9%
Mux select upsets: 59% 
PIP upsets: 22%
Buffer upsets: <2%
Unclassified: <1%
Routing: 82%
LUT/Control: 18%
Total failure bits: 1,175,036
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Conclusions
The SEU failure modes for FPGA designs can 
be complex—more complex than just stuck-
at-1, stuck-at-0, open, and short failures.
Mux select change failures dominate the 
failure types.

Muxes are abundant, are often controlled by 
multiple configuration bits, and are generally 
affected by a change in any of these bits.

Eliminating a single class of failures will not 
lead to an order of magnitude (10x) 
improvement in reliability.



29Graham C6

Future Work
Low-level, architecture specific 
mitigation techniques, for example:

Use abundant routing resources to create 
redundant routing
Employ unused LUT and slice inputs to 
provide input redundancy

Evaluate non-architecture specific SEU 
mitigation techniques for types of 
failures
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Back-up slides
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Why Use SRAM FPGAs in 
Space?

Performance: 100x vs. radiation hardened µP (for fixed volume, 
power, weight), continuous processing at 100+ MS/s

On-orbit processing: can improve system sensitivity and reduce 
communication bandwidth 

On-orbit reprogrammability: counteract mission obsolescence 
and on-orbit faults

Cost: cheaper than low-volume ASICs

Lead time: no ASIC design, fab, and test

Challenge: SEU sensitivities
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Classification of Failures: 72-
bit LFSRs (100% failure bits)

Distribution of bits which 
caused failures every time
Control upsets: 24 %
LUT upsets: <1%
Mux select upsets: 65%
PIP upsets: 9%
Buffer upsets: <2%
Unclassified: <1%
Total Routing: 75%
Total LUT/Control: 24%
100% failure bits: 217,235 
out of 392,166 (55%)
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Classification of Failures: Multiply/ 
Add Design (100% failure bits)

Distribution of bits which 
caused a failure every time
Control upsets: 11%
LUT upsets: <1%
Mux select upsets: 66% 
PIP upsets: 21%
Buffer upsets: <2%
Unclassified: <1%
Routing: 88%
LUT/Control: 11%
100% failure bits: 705,734 
of 1,175,036 (60%)
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